A library of near-infrared integral field spectra of young M–L dwarfs
Artículo
Publication date
2014Metadata
Show full item record
Cómo citar
Bonnefoy, M.
Cómo citar
A library of near-infrared integral field spectra of young M–L dwarfs
Author
Abstract
Context. At young ages, low surface gravity a ects the atmospheric properties of ultracool dwarfs. The impact on medium-resolution
near-infrared (NIR) spectra has only been slightly investigated at the M–L transition so far.
Aims. We present a library of NIR (1.1–2.45 m) medium-resolution (R 1500–2000) integral field spectra of 15 young
M6L0 dwarfs. We aim at deriving updated NIR spectral type, luminosity, and physical parameters (Te , log g, M, L=L ) for each
source. This work also aims at testing the latest generation of BT-SETTL atmospheric models.
Methods. We estimated spectral types using spectral indices and the spectra of young objects classified in the optical. We used
the 2010 and 2012 releases of the BT-SETTL synthetic spectral grid and cross-checked the results with the DRIFT-PHOENIX models
to derive the atmospheric properties of the sources.
Results. We do not find significant di erences between the spectra of young companions and those of young isolated brown dwarfs
in the same spectral type range. We derive infrared spectral types L0 1, L0 1, M9.5 0.5, M9.5 0.5, M9.25 0.25, M8+0:5
0:75,
and M8.5 0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B,
respectively. The BT-SETTL and DRIFT-PHOENIX models yield close Te and log g estimates for each source. The models seem
to show a 600+600
300 K drop in the e ective temperature at the M–L transition. Assuming the former temperatures are correct, we then
derive new mass estimates that confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lie inside
or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5–L0 sources to the Te to derive
semi-empirical radii estimates that do not match “hot-start” evolutionary models predictions at 1–3 Myr. We use complementary data
to demonstrate that atmospheric models are able to reproduce the combined optical and infrared spectral energy distribution, together
with the NIR spectra of these sources simultaneously. But the models still fail to represent the dominant features in the optical. This
issue raises doubts on the ability of these models to predict e ective temperatures from NIR spectra alone.
Conclusions. The library provides templates for characterizing other young and late type objects. The study advocates the use of photometric
and spectroscopic information over a broad range of wavelengths to study the properties of very low-mass young companions
to be detected with the planet imagers (Subaru/SCExAO, LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).
General note
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/126507
DOI: DOI: 10.1051/0004-6361/201118270
Quote Item
A&A 562, A127 (2014)
Collections