On the rate of convergence of krasnosel’skII–mann iterations and their connection with sums of Bernoullis
Artículo
Publication date
2014Metadata
Show full item record
Cómo citar
Cominetti Cotti-Cometti, Roberto
Cómo citar
On the rate of convergence of krasnosel’skII–mann iterations and their connection with sums of Bernoullis
Abstract
In this paper we establish an estimate for the rate of convergence of the
Krasnosel’skiˇı–Mann iteration for computing fixed points of non-expansive
maps. Our main result settles the Baillon–Bruck conjecture [3] on the asymptotic
regularity of this iteration. The proof proceeds by establishing a
connection between these iterates and a stochastic process involving sums
of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype
inequality to majorize the expected value of a convex function of
these sums using Poisson distributions.
General note
Artículo de publicación ISI
Patrocinador
Supported by Fondecyt 1100046 and N´ucleo Milenio Informaci´on y Coordinaci´on
en Redes ICM/FIC P10-024F.
Supported by Basal-Conicyt project and N´ucleo Milenio Informaci´on y Coordinaci
´on en Redes ICM/FIC P10-024F.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/126620
DOI: DOI: 10.1007/s11856-013-0045-4
Quote Item
Israel Journal of Mathematics 199 (2014), 757–772
Collections