A novel deterministic approach for aspect-based opinion mining in tourism products reviews
Artículo
Publication date
2014Metadata
Show full item record
Cómo citar
Marrese Taylor, Edison
Cómo citar
A novel deterministic approach for aspect-based opinion mining in tourism products reviews
Abstract
This work proposes an extension of Bing Liu’s aspect-based opinion mining approach in order to apply it to the tourism domain. The extension concerns with the fact that users refer differently to different kinds of products when writing reviews on the Web. Since Liu’s approach is focused on physical product reviews, it could not be directly applied to the tourism domain, which presents features that are not considered by the model. Through a detailed study of on-line tourism product reviews, we found these features and then model them in our extension, proposing the use of new and more complex NLP-based rules for the tasks of subjective and sentiment classification at the aspect-level. We also entail the task of opinion visualization and summarization and propose new methods to help users digest the vast availability of opinions in an easy manner. Our work also included the development of a generic architecture for an aspect-based opinion mining tool, which we then used to create a prototype and analyze opinions from TripAdvisor in the context of the tourism industry in Los Lagos, a Chilean administrative region also known as the Lake District. Results prove that our extension is able to perform better than Liu’s model in the tourism domain, improving both Accuracy and Recall for the tasks of subjective and sentiment classification. Particularly, the approach is very effective in determining the sentiment orientation of opinions, achieving an F-measure of 92% for the task. However, on average, the algorithms were only capable of extracting 35% of the explicit aspect expressions, using a non-extended approach for this task. Finally, results also showed the effectiveness of our design when applied to solving the industry’s specific issues in the Lake District, since almost 80% of the users that used our tool considered that our tool adds valuable information to their business.
General note
Articulo de publicacion SCOPUS
Patrocinador
FONDEF, CONICYT
Identifier
URI: https://repositorio.uchile.cl/handle/2250/126634
DOI: doi:10.1016/j.eswa.2014.05.045
Quote Item
Expert Systems with Applications Volume 41, Issue 17, 1 December 2014, Pages 7764–7775
Collections