Long-term foundation response to repetitive loading
Abstract
Repetitive loading can induce volumetric and shear strain accumulation in soils and affect the long-term performance of engineered
and natural geosystems.Ahybrid numerical scheme based on theFEMis implemented to analyze problems where a very large number of cycles
is involved. The numerical approach combines a classical mechanical constitutive model to simulate the static load and the first load cycle and
empirical accumulation functions to track the accumulation of deformations during repetitive loading. The hybrid model captures fundamental
characteristics of soil behavior under repetitive loading, such as threshold strains, terminal density, and ratcheting response; it also predicts
volumetric and shear strains as a function of the static stress obliquity, the number of load cycles, and the plastic strain during the first load
cycle. The proposed numerical scheme is used to analyze shallow foundations subjected to repetitive loads. Results show the evolution of vertical
settlement, horizontal displacement, footing rotation, and stress redistribution within the soil mass as the number of load cycles increases.
Displacements and rotation are more pronounced as the static factor of safety decreases and the cyclic load amplitude increases.
General note
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/127018
http://cedb.asce.org/cgi/WWWdisplay.cgi?316333
DOI: DOI: 10.1061/ (ASCE)GT.1943-5606.0001052.
Quote Item
J. Geotech. Geoenviron. Eng. 2014.140.
Collections