Show simple item record

Authordc.contributor.authorÁguila Camacho, Norelys 
Authordc.contributor.authorDuarte Mermoud, Manuel es_CL
Authordc.contributor.authorGallegos, Javier A. es_CL
Admission datedc.date.accessioned2015-01-09T13:06:28Z
Available datedc.date.available2015-01-09T13:06:28Z
Publication datedc.date.issued2014
Cita de ítemdc.identifier.citationCommun Nonlinear Sci Numer Simulat 19 (2014) 2951–2957en_US
Identifierdc.identifier.otherDOI: 10.1016/j.cnsns.2014.01.022
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/127037
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractA new lemma for the Caputo fractional derivatives, when 0 < a < 1, is proposed in this paper. This result has proved to be useful in order to apply the fractional-order extension of Lyapunov direct method, to demonstrate the stability of many fractional order systems, which can be nonlinear and time varying.en_US
Patrocinadordc.description.sponsorshipThis work has been supported by CONICYT – Chile, under the grants FB009 ‘‘Centro de Tecnología para la Minería’’ and FONDECYT 1120453, ‘‘Improvements of Adaptive Systems Performance by using Fractional Order Observers and Particle Swarm Optimization’’.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectFractional calculusen_US
Títulodc.titleLyapunov functions for fractional order systemsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile