Show simple item record

Authordc.contributor.authorParisi Fernández, Antonino es_CL
Authordc.contributor.authorParisi Fernández, Franco es_CL
Admission datedc.date.accessioned2007-05-09T19:01:53Z
Available datedc.date.available2007-05-09T19:01:53Z
Publication datedc.date.issued2004-12-22es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/127261
General notedc.descriptionEste Documento es producto del trabajo de Académicos del Departamento de Administraciónes_CL
Abstractdc.description.abstractThis study analices the neuronal networks models' capacity to predict the sign of the weekly variations of CAC40, Hang Seng, KLSE, MMX, STI, Dow Jones Industry, S&P500, GDAX, Bovespa, Nikkei225 and FTSE100. The relative performance of the models was measured by the number of correct predictions of the index's variation sign, on the base of 51 joint out-samples, each one made up of 50 weekly observations. The results proved that the predictive capacity of the models change through the time, then it is necessary to reestimate the weight of the equation and reconstruct the model period after period. This suggest that an exclusive and unique explanatory model of the stock-exchange indice's evolution does not exist.es_CL
Lenguagedc.language.isoeses_CL
dc.relation.ispartofdc.relation.ispartofPublicación Extranjeraes_CL
Keywordsdc.subjectFinanzases_CL
Area Temáticadc.subject.otherREDES NEURONALESes_CL
Títulodc.titleModelos predictivos de redes neuronales en índices bursátileses_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record