Show simple item record

Authordc.contributor.authorWyneken, Ursula 
Authordc.contributor.authorMarengo, Juan José es_CL
Authordc.contributor.authorOrrego, Fernando es_CL
Admission datedc.date.accessioned2009-06-24T17:27:12Z
Available datedc.date.available2009-06-24T17:27:12Z
Publication datedc.date.issued2004-12
Cita de ítemdc.identifier.citationBRAIN RESEARCH REVIEWS, V.: 47, issue: 1-3, p.: 54-70, DEC 2004.en
Identifierdc.identifier.issn0165-0173
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/128025
Abstractdc.description.abstractThe organization and regulation of excitatory synapses in the mammalian CNS entails complex molecular and cellular processes. In the postsynaptic membrane, scaffolding proteins bring together glutamate receptors with multiple regulatory proteins involved in signal transduction. This gives rise to an elaborate postsynaptic structure known as the postsynaptic density (PSD). This protein network plays a critical role in the regulation of glutamate receptor function and thus in synaptic plasticity. To study this regulation, we have developed a system in which ionotropic glutamate receptors (iGluRs) can be recorded, in the steady state, by the patch clamp technique in isolated PSDs incorporated into giant liposomes. In this preparation, ionotropic glutamate receptors maintain their characteristic physiological and pharmacological properties. The recordings reflect the presence of channel clusters, as multiple conductance and subconductance states are observed. Each of the receptor subtypes is activated by a specific set of kinases that are activated differentially by Ca2 +: the ‘‘kainate receptor kinases’’ are active even in the presence of EGTA, i.e. they are not calcium-dependent; the ‘‘N-methyl-D-aspartate receptor (NMDAR) channel kinases’’ are active in the presence of submicromolar calcium concentrations, whereas the ‘‘a-amino-3- hydroxy-5-methyl-4- isoxazole propionate (AMPA) receptor kinases’’ need AM calcium for activation. The NMDA receptor showed its characteristic voltagedependent Mg2 + blockade, and activation by phosphorylation was in part a consequence of a relief of Mg2 + blockade. These results allow us to propose a model in which phosphorylation of NMDA receptors can contribute to a long-lasting and self-maintained change in synaptic function. The experimental approach we present will allow us to test the functional consequence of activation of the multiple signal transduction pathways thought to regulate excitatory neurotransmission in the adult CNS.en
Patrocinadordc.description.sponsorshipThis work is supported by Fondecyt Grants 198063,1020257, by the Volkswagen Stiftung and Universidad de los Andes Projects.en
Lenguagedc.language.isoenen
Publisherdc.publisherELSEVIER SCIENCE BVen
Keywordsdc.subjectGlutamate receptorsen
Títulodc.titleElectrophysiology and plasticity in isolated postsynaptic densitiesen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record