Simulación secuencial Gaussiana no estacionaria de leyes
Tesis
Open/ Download
Publication date
2014Metadata
Show full item record
Cómo citar
Ortiz Cabrera, Julián
Cómo citar
Simulación secuencial Gaussiana no estacionaria de leyes
Author
Professor Advisor
Abstract
El presente trabajo corresponde al desarrollo de una herramienta que permite simular valores de una variable regionalizada considerando que tales valores tienen una variación sistemática en el espacio. En este contexto, se desarrolla una nueva herramienta de simulación consistente en un algoritmo de simulación Gaussiana secuencial con rechazo considerando una deriva de referencia como input, bajo la hipótesis que esta herramienta permite respetar tal deriva, obteniendo resultados representativos de la base de datos en cuanto a sus estadísticos de orden 1 (histograma) y orden 2 (variograma). La metodología del algoritmo comienza definiendo la secuencia de visitas de nodos a simular de manera aleatoria. Se acepta o rechaza el nodo simulado en base a la deriva de referencia considerando un rechazo determinístico o probabilístico y una tolerancia dinámica. Para cada nodo se considera una vecindad de búsqueda de datos condicionantes para la simulación y una vecindad de búsqueda de datos para el cálculo de una media local simulada. El algoritmo permite ajustar el número aceptable de rechazos, el tamaño de la vecindad de búsqueda de la media local, la tolerancia y el tipo de rechazo.
Se presentan dos casos de estudio. El primero consiste en un ejemplo sintético de una coordenada con deriva lineal. En este primer caso se tiene que, a mayor tolerancia o mayor vecindad de búsqueda de la media local, los valores simulados se distribuyen con mayor dispersión en torno a la deriva de referencia. El segundo estudio de caso consiste en una zona de interés del yacimiento Compañía Minera Cerro Colorado donde se realiza el proceso de simulación en seis unidades de estimación considerando diecisiete sensibilizaciones de los parámetros del algoritmo más una simulación basada en Kriging Simple (SK) y otra basada en Kriging de residuos (BT). En el caso de presencia de deriva se obtiene en general mejores resultados con el algoritmo propuesto que con el SK o BT cuando la deriva se ve reflejada de manera clara en el variograma como en la unidad de estimación cuatro. Las estadísticas de validación en términos de desempeño de las simulaciones como estimación (coeficiente de determinación R2, pendiente de la regresión de datos reales versus simulados y error medio) y en términos de cuantificación de la incertidumbre de los datos originales (accuracy plot) mejoran en relación al SK y BT. De esta manera, la herramienta desarrollada ofrece una alternativa flexible que mejora los estadísticos de validación en comparación al enfoque tradicional frente a un escenario de simulación con presencia de deriva clara en el variograma.
General note
Magíster en Minería Ingeniero Civil de Minas
Identifier
URI: https://repositorio.uchile.cl/handle/2250/130094
Collections
The following license files are associated with this item: