Clasificación de sueño mediante medición de la actividad motora
Tesis
Publication date
2014Metadata
Show full item record
Cómo citar
Held Barrandeguy, Claudio
Cómo citar
Clasificación de sueño mediante medición de la actividad motora
Author
Professor Advisor
Abstract
El objetivo del presente trabajo de memoria fue desarrollar un sistema capaz de aprender de registros actigráficos nocturnos de adolescentes sanos y, en base a la información obtenida y a registros polisomnográficos simultáneos, generar un algoritmo que permita clasificar automáticamente los diferentes estados y etapas del sueño en base al registro actigráfico.
La actigrafía es una técnica de extracción de información fisiológica que consiste en la ubicación de un dispositivo, denominado actígrafo, en la muñeca de la mano no dominante del paciente. El actígrafo graba la actividad de acelerómetros internos, registrando la actividad motora de la extremidad. Esta técnica ha despertado un creciente interés en la comunidad científica debido a su simplicidad, bajo costo y su carácter no invasivo, por lo que se han desarrollado numerosos estudios para el análisis de dicha señal.
El archivo de registros del Laboratorio de Sueño y Neurobiología Funcional del INTA incluye numerosos registros de actigrafía, y polisomnogramas de los mismos pacientes. Se revisaron los registros, descartando aquellos que presentaban ruido o periodos sin mediciones. Luego se buscó sincronizar los registros actigráficos aptos con su respectivo polisomnograma. Se construyó una base de datos compuesta de 114 registros actigráficos muestreados a un dato por minuto, cada uno con su respectivo hipnograma, obtenido a partir del polisomnograma y validado por expertos en medicina del sueño para ser utilizados como ground thruth. Con esta base de datos se construyó un sistema compuesto por dos clasificadores basados en Redes Neuronales Artificiales, el primero es un clasificador que permite distinguir entre sueño y vigilia, mientras que el segundo permite clasificar entre los estados y etapas del sueño.
El clasificador de sueño y vigilia utiliza 11 características extraídas de los registros actigráficos, las que fueron elegidas a través de un proceso de selección de características. Entre éstas se cuentan indicadores estadísticos, que miden tanto tendencia central como dispersión en una ventana de tiempo móvil, así como características de contexto temporal, es decir, en qué tiempo se localiza la ventana en relación con el sueño completo, y el contexto de actividad, es decir, información sobre la actividad previa y posterior a la ventana. Este clasificador tiene una precisión de 93,2%, con una detección de sueño de 96,2% y una detección de vigilia de 79,6%. Estos resultados constituyen una mejora respecto de los publicados a la fecha por otros grupos de investigación.
El segundo clasificador utiliza las mismas características que el primero excepto dos, que fueron desechadas mediante un test estadístico por ser mutuamente redundantes con otras que entregan más información, lo que no es el caso para la clasificación sueño-vigilia. En esta clasificación se busca distinguir entre los minutos pertenecientes a cuatro etapas: Sueño Quieto 1 (SQ 1), SQ 2, SQ 3&4 y Sueño Paradójico (SP). El clasificador de estados y etapas del sueño tiene una precisión global del 61,0%, detectando el 12,2% de los minutos pertenecientes a la etapa SQ 1, 80,7% de los minutos pertenecientes a la etapa SQ 2, 68,8% de los minutos pertenecientes a SQ3&4 y 6,7% de los etiquetados como etapa SP. El bajo rendimiento del sistema de clasificación se debe a que los datos actigráficos no parecen ser adecuados para discriminar estados y etapas de sueño. No existen estudios con los cuales comparar este resultado.
Combinando los ambos clasificadores se alcanzó una precisión de 62,4%.
General note
Ingeniero Civil Eléctrico
Identifier
URI: https://repositorio.uchile.cl/handle/2250/131049
Collections
The following license files are associated with this item: