Stability of an inverse problem for the discrete wave equation and convergence results
Artículo
Access note
Acceso abierto
Publication date
2015Metadata
Show full item record
Cómo citar
Baudouin, Lucie
Cómo citar
Stability of an inverse problem for the discrete wave equation and convergence results
Abstract
Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differ-ences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterparts, include new terms depending on the discretization parameter h. From these stability results, we design a numerical method to compute convergent approximations of the continuous potential.
Patrocinador
Math-AmSud project COSIP “Control Systems and Identification Problems”, Fondecyt-1110290, Conicyt-ACT1106 grants
and University Paul Sabatier (Toulouse 3), AO PICAN
Indexation
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/132340
DOI: 10.1016/j.matpur.2014.11.006
ISSN: 0021-7824
Quote Item
J. Math. Pures Appl. 103 (2015) 1475–1522
Collections
The following license files are associated with this item: