Show simple item record

Authordc.contributor.authorOrchard Concha, Marcos 
Authordc.contributor.authorLacalle Alarcón, Matías 
Authordc.contributor.authorOlivares, Benjamín 
Authordc.contributor.authorSilva Sánchez, Jorge 
Authordc.contributor.authorPalma Behnke, Rodrigo 
Authordc.contributor.authorEstévez Valencia, Pablo 
Authordc.contributor.authorSeverino Astudillo, Bernardo 
Authordc.contributor.authorCalderón Muñoz, Williams 
Authordc.contributor.authorCortés Carmona, Marcelo 
Admission datedc.date.accessioned2015-08-12T15:11:01Z
Available datedc.date.available2015-08-12T15:11:01Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationIEEE Transactions on Reliability, Vol. 64, No. 2, June 2015en_US
Identifierdc.identifier.issn0018-9529
Identifierdc.identifier.otherDOI: 10.1109/TR.2015.2394356
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132634
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractThis paper analyses and compares the performance of a number of approaches implemented for the detection of capacity regeneration phenomena (measured in ampere-hours) in the degradation trend of energy storage devices, particularly Lithium-Ion battery cells. All implemented approaches are based on a combination of information-theoretic measures and sequential Monte Carlo methods for state estimation in nonlinear, non-Gaussian dynamic systems. Properties of information measures are conveniently used to quantify the impact of process measurements on the posterior probability density function of the state, assuming that sub-optimal Bayesian estimation algorithms (such as classic or risk-sensitive particle filters) are to be used to obtain an empirical representation of the system uncertainty. The proposed anomaly detection strategies are tested and evaluated both in terms of (i) detection time (early detection) and (ii) false alarm rates. Verification of detection schemes is performed using simulated data for battery State-Of-Health accelerated degradation tests, to ensure absolute knowledge on the time instant where a regeneration phenomenon occursen_US
Patrocinadordc.description.sponsorshipFONDECYT 1140774 and Innova-CORFO 12IDL2–16296en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherIEEEen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectCapacity regenerationen_US
Keywordsdc.subjectInformation theoretic measuresen_US
Keywordsdc.subjectLithium-ion batteryen_US
Keywordsdc.subjectParticle filtersen_US
Keywordsdc.subjectState-of-healthen_US
Títulodc.titleInformation-Theoretic Measures and Sequential Monte Carlo Methods for Detection of Regeneration Phenomena in the Degradation of Lithium-Ion Battery Cellsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile