Classification of sofic projective subdynamics of multidimensional shifts of finite type
Artículo

Publication date
2015Metadata
Show full item record
Cómo citar
Pavlov, Ronnie
Cómo citar
Classification of sofic projective subdynamics of multidimensional shifts of finite type
Author
Abstract
Motivated by Hochman's notion of subdynamics of a Z(d) subshift (2009), we define and examine the projective subdynamics of Z(d) shifts of finite type (SFTs) where we restrict not only the action but also the phase space. We show that any Z sofic shift of positive entropy is the projective subdynamics of a Z(2) (Z(d)) SFT, and that there is a simple condition characterizing the class of zero-entropy Z sofic shifts which are not the projective subdynamics of any Z(2) SFT. We define notions of stable and unstable subdynamics in analogy with the notions of stable and unstable limit sets in cellular automata theory, and discuss how our results fit into this framework. One-dimensional strictly sofic shifts of positive entropy admit both a stable and an unstable realization, whereas Z SFTs only allow for stable realizations and a particular class of zero-entropy proper Z sofics only allows for an unstable realization. Finally, we prove that the union of finitely many Z(k) subshifts, all of which are realizable in Z(d) SFTs, is again realizable when it contains at least two periodic points, that the projective subdynamics of Z(2) SFTs with the uniform filling property (UFP) are always stable, thus sofic, and we exhibit a class of non-sofic Z subshifts which are not the projective subdynamics of any Z(d) SFT.
General note
Artículo de publicación ISI
Patrocinador
FONDECYT 3080008,
1100719
Quote Item
Transactions of the American Mathematical Society Volumen: 367 Número: 5 Páginas: 3371-3421
Collections
The following license files are associated with this item: