Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials
Artículo

Publication date
2015Metadata
Show full item record
Cómo citar
Gkikas, Konstantinos
Cómo citar
Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials
Author
Abstract
Let Omega subset of R-N be a bounded C-2 domain and L-kappa = -Delta - kappa/d(2) where d = dist(., partial derivative Omega) and 0 < K <= 1/4. Let alpha(+/-) = 1 +/- root 1 - 4K, lambda(kappa) the first eigenvalue of L-kappa with corresponding positive eigenfunction phi(kappa). If g is a continuous nondecreasing function satisfying integral(infinity)(1) (g(s) + 2_2f vertical bar g(-s)vertical bar)s(-2) (2N-2+alpha/2N-4+alpha+) ds < infinity, then for any Radon measures nu is an element of m(phi kappa) (Omega) and mu is an element of m (partial derivative Omega) there exists a unique weak solution to problem P nu,mu: L(kappa)u + g(u) = nu in Omega, u = mu on partial derivative Omega. If g(r) = vertical bar r vertical bar(q-1) u (q > 1), we prove that, in the supercritical range of q, a necessary and sufficient condition for solving P-0,P-mu with mu > 0 is that mu is absolutely continuous with W respect to the capacity associated with the space B2- (2+alpha+/2q)',(q)'(RN-1). We also characterize the boundary removable sets in terms of this capacity. In the subcritical range of q we classify the isolated singularities of positive solutions.
General note
Artículo de publicación ISI
Patrocinador
FONDECYT
3140567
MATH-Amsud program
13MATH-03-QUESP
Identifier
URI: https://repositorio.uchile.cl/handle/2250/132751
DOI: DOI: 10.1016/j.crma.2015.01.011
ISSN: 1631-073X
Quote Item
C. R.Acad.Sci.Paris,Ser.I353(2015)315–320
Collections
The following license files are associated with this item: