Abstract
Given a one-factorization F of the complete bipartite graph Kn;n, let pf(F) de-
note the number of Hamiltonian cycles obtained by taking pairwise unions of perfect
matchings in F. Let pf(n) be the maximum of pf(F) over all one-factorizations F
of Kn;n. In this work we prove that pf(n) > n2=4, for all n > 2.
General note
Artículo de publicación ISI
Patrocinador
Program Basal-CMM
Nucleo Milenio Informacion y Coordinacion en Redes
ICM/FIC RC130003