Show simple item record

Authordc.contributor.authorRiquelme Hernández, Mario 
Authordc.contributor.authorQuataert, Eliot 
Authordc.contributor.authorVerscharen, Daniel 
Admission datedc.date.accessioned2015-08-22T20:11:53Z
Available datedc.date.available2015-08-22T20:11:53Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationThe Astrophysical Journal, 800:27 (17pp), 2015 February 10en_US
Identifierdc.identifier.issn0004-637X
Identifierdc.identifier.otherDOI: 10.1088/0004-637X/800/1/27
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/133036
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractWe use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1–100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p⊥ > p and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 B in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 B , the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.en_US
Patrocinadordc.description.sponsorshipCONICYT; Proyecto Fondecyt Iniciación No. 11121145); NASA HTP grant NNX11AJ37G and NASA grant NNX12AB27Gen_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherAmerican Astronomical Societyen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectAccretionen_US
Keywordsdc.subjectAccretion disksen_US
Keywordsdc.subjectInstabilitiesen_US
Keywordsdc.subjectPlasmasen_US
Keywordsdc.subjectSolar winden_US
Títulodc.titleParticle-in-Cell Simulations of Continuosly Driven Mirror and Ion cycloton Instability in High Beta Astrophysical and Heliospheric Plasmasen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile