High-resolution observations of the outer disk around T Chamaeleontis: the view from ALMA
Artículo

Publication date
2015Metadata
Show full item record
Cómo citar
Huélamo, N.
Cómo citar
High-resolution observations of the outer disk around T Chamaeleontis: the view from ALMA
Author
Abstract
Context. Transitional disks are circumstellar disks with dust gaps thought to be related in some cases to planet formation. They can
shed light on the planet formation process by the analysis of their gas and dust properties. T Cha is a young star surrounded by a
transitional disk with signatures of planet formation.
Aims. The aim of this work is to spatially resolve the outer disk around T Cha and to derive its main properties.
Methods. We have obtained high-resolution and high-sensitivity ALMA observations in the CO(3–2), 13CO(3–2), and CS(7–6) emission
lines to reveal the spatial distribution of the gaseous disk around the star. In order to study the dust within the disk we have also
obtained continuum images at 850 μm from the line-free channels.
Results. We have spatially resolved the outer disk around T Cha. Using the CO(3−2) emission we derive a radius of ∼230AU.We also
report the detection of the 13CO(3−2) and the CS(7−8) molecular emissions, which show smaller radii than the CO(3−2) detection.
The continuum observations at 850 μm allow the spatial resolution of the dusty disk, which shows two emission bumps separated by
∼40AU, consistent with the presence of a dust gap in the inner regions of the disk, and an outer radius of ∼80AU. Therefore, T Cha
is surrounded by a compact dusty disk and a larger and more diffuse gaseous disk, as previously observed in other young stars. The
continuum intensity profiles are different at both sides of the disk suggesting possible dust asymmetries. We derive an inclination
of i(◦) = 67 ± 5, and a position angle of PA(◦) = 113 ± 6, for both the gas and dust disks. The comparison of the ALMA data
with radiative transfer models shows that the gas and dust components can only be simultaneously reproduced when we include a
tapered edge prescription for the surface density profile. The best model suggests that most of the disk mass is placed within a radius
of R < 50AU. Finally, we derive a dynamical mass for the central object of M∗ = 1.5 ± 0.2 M , comparable to the one estimated with
evolutionary models for an age of ∼10 Myr.
General note
Artículo de publicación ISI
Patrocinador
MICINN (Spain), FEDER funds, Millennium Science Initiative (Chilean Ministry of Economy), European Commission
Identifier
URI: https://repositorio.uchile.cl/handle/2250/133145
DOI: DOI: 10.1051/0004-6361/201424404
Quote Item
Astronomy & Astrophysics 575, L5 (2015)
Collections
The following license files are associated with this item: