Vortex-type solutions to a magnetic nonlinear Choquard equation
Author
dc.contributor.author
Salazar, Dora
Admission date
dc.date.accessioned
2015-08-27T19:17:19Z
Available date
dc.date.available
2015-08-27T19:17:19Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Zeitschrift für angewandte Mathematik und Physik. June 2015, Volume 66, Issue 3, pp 663-675
en_US
Identifier
dc.identifier.other
DOI: 10.1007/s00033-014-0412-y
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/133253
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We consider the stationary nonlinear magnetic Choquard equation where is a magnetic potential and is a bounded electric potential. For a given group of linear isometries of , we assume that A(gx) = gA(x) and W(gx) = W(x) for all . Under some assumptions on the decay of A and W at infinity, we establish the existence of solutions to this problem which satisfy where is a given continuous group homomorphism into the unit complex numbers.