The multiplicative anomaly of three or more commuting elliptic operators
Artículo
Publication date
2015Metadata
Show full item record
Cómo citar
Castillo Gárate, Víctor
Cómo citar
The multiplicative anomaly of three or more commuting elliptic operators
Abstract
zeta-regularized determinants are well-known to fail to be multiplicative, so that in general det(zeta)(AB) not equal det(zeta)(A) det(zeta)(B). Hence one is lead to study the n-fold multiplicative anomaly
M-n(A(1),..., A(n)) := det(zeta)(Pi(n)(i=1) A(i))/Pi(n)(i=1)det(zeta()A(i))
attached to n (suitable) operators A1,..., An. We show that if the A(i) are commuting pseudo-differential elliptic operators, then their joint multiplicative anomaly can be expressed in terms of the pairwise multiplicative anomalies. Namely
M-n(A(1),..., A(n))(m1+...+mn) = Pi(1 <= i<j <= n) M-2(A(i), A(j))(mi+mj),
where m(j) is the order of A(j). The proof relies on Wodzicki's 1987 formula for the pairwise multiplicative anomaly M-2(A, B) of two commuting elliptic operators.
General note
Artículo de publicación ISI
Patrocinador
FONDECYT 1110277;
1120300
Quote Item
Mathematical Research Letters Vol. 22 No. 3 2015
Collections
The following license files are associated with this item: