The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a
Author
dc.contributor.author
Cánovas, José
Author
dc.contributor.author
Berndt, F. Andrés
Author
dc.contributor.author
Sepúlveda, Hugo
Author
dc.contributor.author
Aguilar, Rodrigo
Author
dc.contributor.author
Veloso, Felipe A.
Author
dc.contributor.author
Montecino, Martín
Author
dc.contributor.author
Oliva, Carlos
Author
dc.contributor.author
Maass Oñate, Juan
Author
dc.contributor.author
Sierralta Jara, Jimena
Author
dc.contributor.author
Kukuljan Padilla, Manuel
Admission date
dc.date.accessioned
2015-09-10T20:10:01Z
Available date
dc.date.available
2015-09-10T20:10:01Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
The Journal of Neuroscience, May 13, 2015 • 35(19):7552–7564
en_US
Identifier
dc.identifier.other
DOI: 10.1523/JNEUROSCI.0169-15.2015
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/133593
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
The acquisition of distinct neuronal fates is fundamental for the function of the cerebral cortex. We find that the development of subcerebral projections from layer 5 neurons in the mouse neocortex depends on the high levels of expression of the transcription factor CTIP1; CTIP1 is coexpressed with CTIP2 in neurons that project to subcerebral targets and with SATB2 in those that project to the contralateral cortex. CTIP1 directly represses Tbr1 in layer 5, which appears as a critical step for the acquisition of the subcerebral fate. In contrast, lower levels of CTIP1 in layer 6 are required for TBR1 expression, which directs the corticothalamic fate. CTIP1 does not appear to play a critical role in the acquisition of the callosal projection fate in layer 5. These findings unravel a key step in the acquisition of cell fate for closely related corticofugal neurons and indicate that differential dosages of transcriptions factors are critical to specify different neuronal identities.