Show simple item record

Authordc.contributor.authorSchenck, Thilo L. 
Authordc.contributor.authorChávez, Myra N. 
Authordc.contributor.authorCondurache, Alexandru P. 
Authordc.contributor.authorHopfner, Úrsula 
Authordc.contributor.authorRezaeian, Farid 
Authordc.contributor.authorMachens, Hans Günther 
Authordc.contributor.authorEgaña, José T. 
Admission datedc.date.accessioned2015-09-16T20:37:00Z
Available datedc.date.available2015-09-16T20:37:00Z
Publication datedc.date.issued2014
Cita de ítemdc.identifier.citationJove-Journal Of Visualized Experiments Número: 90 Aug 2014en_US
Identifierdc.identifier.otherdoi:10.3791/51428
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/133721
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractInsufficient vascularization is considered to be one of the main factors limiting the clinical success of tissue-engineered constructs. In order to evaluate new strategies that aim at improving vascularization, reliable methods are required to make the in-growth of new blood vessels into bioartificial scaffolds visible and quantify the results. Over the past couple of years, our group has introduced a full skin defect model that enables the direct visualization of blood vessels by transillumination and provides the possibility of quantification through digital segmentation. In this model, one surgically creates full skin defects in the back of mice and replaces them with the material tested. Molecules or cells of interest can also be incorporated in such materials to study their potential effect. After an observation time of one’s own choice, materials are explanted for evaluation. Bilateral wounds provide the possibility of making internal comparisons that minimize artifacts among individuals as well as of decreasing the number of animals needed for the study. In comparison to other approaches, our method offers a simple, reliable and cost effective analysis. We have implemented this model as a routine tool to perform high-resolution screening when testing vascularization of different biomaterials and bio-activation approaches.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherJOURNAL OF VISUALIZED EXPERIMENTSen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectIn vivo modelen_US
Keywordsdc.subjectMatrixen_US
Keywordsdc.subjectScaffolden_US
Keywordsdc.subjectSkin defecten_US
Keywordsdc.subjectDigital segmentationen_US
Keywordsdc.subjectTransilluminationen_US
Keywordsdc.subjectTissue engineeringen_US
Keywordsdc.subjectVascularizationen_US
Keywordsdc.subjectBiomaterialsen_US
Keywordsdc.subjectIssue 90en_US
Keywordsdc.subjectBioengineeringen_US
Títulodc.titleA Full Skin Defect Model to Evaluate Vascularization of Biomaterials In Vivoen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile