Show simple item record

Professor Advisordc.contributor.advisorOrdoñez Pizarro, Fernando
Professor Advisordc.contributor.advisorEspinoza González, Daniel 
Authordc.contributor.authorChicoisne, Renaud Pierre 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Ingeniería Industrial
Associate professordc.contributor.otherMoreno Araya, Eduardo
Associate professordc.contributor.otherDessouky, Maged
Admission datedc.date.accessioned2015-11-23T13:28:04Z
Available datedc.date.available2015-11-23T13:28:04Z
Publication datedc.date.issued2015
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/135193
General notedc.descriptionDoctor en Sistemas de Ingeniería
Abstractdc.description.abstractMuchos problemas de decisión industriales o logísticos pueden ser vistos como problemas de optimización y para muchos de ellos no es razonable ocupar datos deterministas. Como veremos en este trabajo en el contexto de despachos de emergencia o de planificación de seguridad, las condiciones reales son desconocidas y tomar decisiones sin considerar esta incertidumbre pueden llevar a resultados catastróficos. La teoría y la aplicación de optimización bajo incertidumbre es un tema que ha generado un amplio área de investigación. Sin embargo, aún existen grandes diferencias en complejidad entre optimización determinista y su versión incierta. En esta tesis, se estudian varios problemas de optimización con aversión al riesgo con un enfasis particular en el problema de camino más corto (RASP), problemas estocásticos en redes en general y juegos de seguridad de Stackelberg. Para obtener distribuciones de tiempos de viaje precisos sobre una red vial a partir de datos GPS del sistema de tránsito, se presenta una revisión de los métodos existentes para proyectar trayectorias GPS y se definen dos nuevos algoritmos: Uno que permite la proyección de datos óptima con respecto a una medida de error convenientemente definida (MOE), y un método heurístico rápido que permite proyectar grandes cantidades de datos de manera contínua (MMH). Se presentan resultados computacionales en redes reales y generadas de gran tamaño. Luego, se desarrollan algoritmos eficientes para problemas de ruteo con aversión al riesgo utilizando métodos de Sample Average Approximation, técnicas de linealización y métodos de descomposición. Se estudian la medida de riesgo entrópica y el Conditional Value at Risk considerando correlaciones entre las variables aleatorias. Se presentan resultados computacionales prometedores en instancias generadas de tamaño mediano. Sin embargo, la naturaleza combinatorial de los problemas los vuelve rapidamente intratable a medida que el tamaño del problema crece. Para hacer frente a esta dificultad computacional, se presentan nuevas formulaciones para problemas en redes difíciles, que tienen un menor número de variables enteras. Estas formulaciones ayudan a derivar esquemas de brancheo que se aprovechan de la estructura especial de las formulaciones propuestas. Se muestra como aplicar estas ideas a los conjuntos de camino simple y de circuito hamiltoniano en redes generales, así como los conjuntos de camino simple y de corte en grafos dirigidos acíclicos (DAG). Este trabajo preliminar muestra ideas prometedoras para resolver problemas difíciles. Finalmente, se exploran las implicaciones de los métodos algortmicos y las formulaciones desarrolladas para resolver RASP en un área diferente. Se presentan nuevas formulaciones y enfoques de resolución para juegos de seguridad de Stackelberg cuando el defensor es averso al riesgo con respecto a la estrategia del atacante. Esto se puede resolver de manera polinomial cuando se enfrenta a un adversario y resolviendo un problema de optimización convexa en números enteros cuando el defensor enfrenta varios tipos de adversarios.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherUniversidad de Chileen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectAlgoritmos - Procesamiento de datosen_US
Keywordsdc.subjectGrafos dirigidosen_US
Títulodc.titleEfficient algorithms for risk averse optimizationen_US
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile