Large Conformal metrics with prescribed sign-changing Gauss curvature
Author
dc.contributor.author
Pino Manresa, Manuel del
Author
dc.contributor.author
Román, Carlos
Admission date
dc.date.accessioned
2015-11-26T20:16:36Z
Available date
dc.date.available
2015-11-26T20:16:36Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Calculus of Variations (2015) 54:763–789
en_US
Identifier
dc.identifier.other
10.1007/s00526-014-0805-y
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135281
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Let (M, g) be a two dimensional compact Riemannian manifold of genus g(M) > . Let f be a smooth function on M such that
f >= 0, f not equivalent to 0, min(M) f = 0.
Let be any set of points at which f (P-i) = 0 and D2 f (P-i) is non-singular. We prove that for all sufficiently small lambda > 0 there exists a family of "bubbling" conformal metrics g(lambda) = e(u lambda) g such that their Gauss curvature is given by the sign-changing function K-g lambda = - f + lambda(2). Moreover, the family u(lambda) satisfies
u(lambda) (p(j)) = -4 log lambda - 2 log (1/root 2 log 1/lambda) + O(1)
and
lambda(2)e(u lambda) -> 8 pi Sigma(n)(i=1) delta(pi), as lambda --> 0,
where delta(p) designates Dirac mass at the point p.
en_US
Patrocinador
dc.description.sponsorship
French National Research Agency (ANR) part of the "Investissements d'Avenir" program
ANR-10-LABX-0098