Non-linear Schrodinger equation with non-local regional diffusion
Author
dc.contributor.author
Felmer Aichele, Patricio
Author
dc.contributor.author
Torres, César
Admission date
dc.date.accessioned
2015-11-26T20:19:36Z
Available date
dc.date.available
2015-11-26T20:19:36Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Calculus of Variations (2015) 54:75–98
en_US
Identifier
dc.identifier.other
DOI: 10.1007/s00526-014-0778-x
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135283
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this article we are interested in the nonlinear Schrodinger equation with non-local regional difussion
epsilon(2 alpha)(-Delta)(rho)(alpha)u + u = f (u) in R-n,
u epsilon H-alpha(R-n),
where f is a super-linear sub-critical function and (-Delta)(rho)(alpha) is a variational version of the regional laplacian, whose range of scope is a ball with radius rho(x) > 0. We study the existence of a ground state and we analyze the behavior of semi-classical solutions as epsilon --> 0.