Show simple item record

Authordc.contributor.authorMerigó Lindahl, José 
Authordc.contributor.authorPalacios Marqués, Daniel 
Authordc.contributor.authorRibeiro Navarrete, Belén 
Cita de ítemdc.identifier.citationJournal of Business Research 68 (2015) 2299–2304en_US
Identifierdc.identifier.otherDOI: 10.1016/j.jbusres.2015.06.015
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractSales forecasting consists of calculating the expected sales of a specific product or company. An important issue when dealing with sales forecasting is the calculation of the average sales, usually using the arithmetic mean or the weighted average. This study introduces new methods for calculating the average sales. These methods are two modern aggregation operators: the ordered weighted average, and the unified aggregation operator. The main advantage of this approach is the possibility to deal with uncertain and complex environments in a more complete way. The study develops some key examples through multi-person and multi-criteria techniques. The study also presents a numerical example regarding the calculation of the average sales of a product in a set of countries.en_US
Patrocinadordc.description.sponsorshipEuropean Commission PIEF-GA-2011-300062 University of Chile Spanish Ministry of Economy and Competitiveness DER2012-39223-C02-02en_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.uri*
Keywordsdc.subjectAggregation systemsen_US
Keywordsdc.subjectAverage salesen_US
Keywordsdc.subjectSales forecastingen_US
Keywordsdc.subjectOrdered weighted averageen_US
Keywordsdc.subjectUnified aggregation operatoren_US
Títulodc.titleAggregation systems for sales forecastingen_US
Document typedc.typeArtículo de revista

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile