mu-Limit sets of cellular automata from a computational complexity perspective
Author
dc.contributor.author
Boyer, Laurent
Author
dc.contributor.author
Delacourt, Martin
Author
dc.contributor.author
Poupet, Victor
Author
dc.contributor.author
Sablik, Mathieu
Author
dc.contributor.author
Theyssier, Guillaume
Admission date
dc.date.accessioned
2015-12-11T18:20:43Z
Available date
dc.date.available
2015-12-11T18:20:43Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Journal of Computer and System Sciences Volumen: 81 Número: 8 Dic 2015
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.jcss.2015.05.004
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135643
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
This paper concerns mu-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial mu-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, mu-limit sets can have a Sigma(0)(3)-hard language, second, they can contain only a-complex configurations, third, any nontrivial property concerning them is at least Pi(0)(3)-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.
en_US
Patrocinador
dc.description.sponsorship
FONDECYT
Proyecto 3130496
Agence Nationale de la Recherche
ANR-09-BLAN-0164