Stability in Linear Optimization Under Perturbations of the Left-Hand Side Coefficients
Author
dc.contributor.author
Daniilidis, Aris
Author
dc.contributor.author
Goberna, M. A.
Author
dc.contributor.author
López, M. A.
Author
dc.contributor.author
Lucchetti, R.
Admission date
dc.date.accessioned
2016-01-12T02:00:02Z
Available date
dc.date.available
2016-01-12T02:00:02Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Set-Valued Var. Anal (2015) 23:737–758
en_US
Identifier
dc.identifier.other
DOI: 10.1007/s11228-015-0333-8
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/136369
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
This paper studies stability properties of linear optimization problems with finitely many variables and an arbitrary number of constraints, when only left hand side coefficients can be perturbed. The coefficients of the constraints are assumed to be continuous functions with respect to an index which ranges on certain compact Hausdorff topological space, and these properties are preserved by the admissible perturbations. More in detail, the paper analyzes the continuity properties of the feasible set, the optimal set and the optimal value, as well as the preservation of desirable properties (boundedness, uniqueness) of the feasible and of the optimal sets, under sufficiently small perturbations.
en_US
Patrocinador
dc.description.sponsorship
BASAL (Chile)
PFB-03
FONDECYT (Chile)
1130176
Australian Research Council
DP120100467
DP110102011