Show simple item record

Authordc.contributor.authorReyes Marambio, Jorge 
Authordc.contributor.authorMoser, Francisco 
Authordc.contributor.authorGana, Felipe 
Authordc.contributor.authorSeverino, Bernardo 
Authordc.contributor.authorCalderón Muñoz, Williams 
Authordc.contributor.authorPalma Behnke, Rodrigo 
Authordc.contributor.authorEstévez Valencia, Pablo 
Authordc.contributor.authorOrchard Concha, Marcos 
Authordc.contributor.authorCortés, Marcelo 
Admission datedc.date.accessioned2016-06-13T18:52:04Z
Available datedc.date.available2016-06-13T18:52:04Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationJournal of Power Sources 306 (2016) 636-645en_US
Identifierdc.identifier.otherdx.doi.org/10.1016/j.jpowsour.2015.12.037
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/138762
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractThis paper presents a experimentally-validated fractal time thermal model to describe the discharge and cooling down processes of air-cooled cylindrical Lithium-ion cells. Three cases were studied, a spatially isolated single cell under natural convection and two spatial configurations of modules with forced air cooling: staggered and aligned arrays with 30 and 25 cells respectively. Surface temperature measurements for discharge processes were obtained in a single cell at 1 C, 2 C and 3 C discharge rates, and in the two arrays at 1 C discharge rate. In the modules, surface temperature measurements were obtained for selected cells at specific inlet cooling air speeds. The fractal time energy equation captures the anomalous temperature relaxation and describes the cell surface temperature using a stretched exponential model. Stretched exponential temperature models of cell surface temperature show a better agreement with experimental measurements than pure exponential temperature models. Cells closer to the horizontal side walls have a better heat dissipation than the cells along the centerline of the module. The high prediction capabilities of the fractal time energy equation are useful in new design approaches of thermal control strategies of modules and packs, and to develop more efficient signal-correction algorithms in multipoint temperature measurement technologies in Li-ion batteries.en_US
Patrocinadordc.description.sponsorshipCORFO-Chile 11IDL1-10466 12IDL2-16296; CONICYT/ FONDAP 15110019 ; Fondecyt 1151438en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectFractal time modelsen_US
Keywordsdc.subjectStretched exponential modelsen_US
Keywordsdc.subjectExperimental thermal responseen_US
Keywordsdc.subjectLithium-ion cell heat generationen_US
Títulodc.titleA fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurementsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile