We study cavitation type equations, div(a(i j) (X)del u) similar to delta(0)(u), for bounded, measurable elliptic media a(i j) (X). De Giorgi-Nash-Moser theory assures that solutions are alpha-Holder continuous within its set of positivity, {u > 0}, for some exponent alpha strictly less than one. Notwithstanding, the key, main result proven in this paper provides a sharp Lipschitz regularity estimate for such solutions along their free boundaries, partial derivative{u > 0}. Such a sharp estimate implies geometric-measure constrains for the free boundary. In particular, we show that the non-coincidence {u > 0} set has uniform positive density and that the free boundary has finite (n - zeta)-Hausdorff measure, for a universal number 0 < zeta <= 1.
Fontúrbel, Francisco E.; Simonetti Zambelli, Javier Andrés(2011)
Translocation is a non-lethal practice used to manage carnivore-livestock conflicts. Nevertheless, its use has been questioned due to its low success rate and high cost. We performed a literature review to assess the ...
In this note we show a one-to-one correspondence between potentially optimal solutions to the cluster deletion problem in a graph Gand potentially optimal solutions for the minimum sum coloring problem in G(i.e. the ...
López Ríos, Juan Carlos(Universidad de Chile, 2015)
En este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la ...