Cavity problems in discontinuous media
Author
Abstract
We study cavitation type equations, div(a(i j) (X)del u) similar to delta(0)(u), for bounded, measurable elliptic media a(i j) (X). De Giorgi-Nash-Moser theory assures that solutions are alpha-Holder continuous within its set of positivity, {u > 0}, for some exponent alpha strictly less than one. Notwithstanding, the key, main result proven in this paper provides a sharp Lipschitz regularity estimate for such solutions along their free boundaries, partial derivative{u > 0}. Such a sharp estimate implies geometric-measure constrains for the free boundary. In particular, we show that the non-coincidence {u > 0} set has uniform positive density and that the free boundary has finite (n - zeta)-Hausdorff measure, for a universal number 0 < zeta <= 1.
General note
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/139080
DOI: DOI: 10.1007/s00526-016-0955-1
Quote Item
Calc. Var. (2016) 55:10
Collections
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile
Related items
Showing items related by title, author, creator and subject.
-
Perrot, Kévin; Van Pham, Trung (Springer, 2015)In this paper we present further studies of recurrent configurations of chip-firing games on Eulerian directed graphs (simple digraphs), a class on the way from undirected graphs to general directed graphs. A computational ...
-
López Ríos, Juan Carlos (Universidad de Chile, 2015)En este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la ...
-
Bonomo, Flavia; Durán Maggiolo, Guillermo; Napoli, Amedeo; Valencia Pabon, Mario (Elsevier, 2015)In this note we show a one-to-one correspondence between potentially optimal solutions to the cluster deletion problem in a graph Gand potentially optimal solutions for the minimum sum coloring problem in G(i.e. the ...