Symmetry results for positive solutions of mixed integro-differential equations
Author
dc.contributor.author
dos Prazeres, Disson
Author
dc.contributor.author
Wang, Ying
Admission date
dc.date.accessioned
2016-06-29T22:04:11Z
Available date
dc.date.available
2016-06-29T22:04:11Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
J. Math. Anal. Appl. 438 (2016) 909–919
Identifier
dc.identifier.issn
0022-247X
Identifier
dc.identifier.other
DOI: 10.1016/j.jmaa.2016.02.023
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/139289
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this paper, we study symmetry property for positive solutions of mixed integro-differential equations
[GRAPHICS]
where N, M >= 1, x is an element of B-1(N)(0) = {x is an element of R-N : vertical bar x vertical bar < 1}, y is an element of B-1(M) (0) = {y is an element of R-M : vertical bar y vertical bar < 1}, the operator (-Delta)(x)(alpha 1) denotes the fractional Laplacian of exponent alpha(1) is an element of (0,1) with respect to x, (-Delta)(y)(alpha 2) denotes the fractional Laplacian of exponent alpha(2) is an element of (0,1) with respect to y. We make use of the Maximum Principle for small domain to start the moving planes to obtain the symmetry results for positive solutions
en_US
Patrocinador
dc.description.sponsorship
Proyecto Basal
PFB 03
CNPq
PDE 248899/2013-9
National Sciences Foundation of China
11526102