Symmetry results for positive solutions of mixed integro-differential equations
Artículo
Open/ Download
Publication date
2016Metadata
Show full item record
Cómo citar
dos Prazeres, Disson
Cómo citar
Symmetry results for positive solutions of mixed integro-differential equations
Author
Abstract
In this paper, we study symmetry property for positive solutions of mixed integro-differential equations
[GRAPHICS]
where N, M >= 1, x is an element of B-1(N)(0) = {x is an element of R-N : vertical bar x vertical bar < 1}, y is an element of B-1(M) (0) = {y is an element of R-M : vertical bar y vertical bar < 1}, the operator (-Delta)(x)(alpha 1) denotes the fractional Laplacian of exponent alpha(1) is an element of (0,1) with respect to x, (-Delta)(y)(alpha 2) denotes the fractional Laplacian of exponent alpha(2) is an element of (0,1) with respect to y. We make use of the Maximum Principle for small domain to start the moving planes to obtain the symmetry results for positive solutions
General note
Artículo de publicación ISI
Patrocinador
Proyecto Basal
PFB 03
CNPq
PDE 248899/2013-9
National Sciences Foundation of China
11526102
Identifier
URI: https://repositorio.uchile.cl/handle/2250/139289
DOI: DOI: 10.1016/j.jmaa.2016.02.023
ISSN: 0022-247X
Quote Item
J. Math. Anal. Appl. 438 (2016) 909–919
Collections
The following license files are associated with this item: