Show simple item record

Authordc.contributor.authorArias Calderón, Manuel 
Authordc.contributor.authorAlmarza, Gonzalo 
Authordc.contributor.authorDíaz Vegas, Alexis 
Authordc.contributor.authorContreras Ferrat, Ariel Eduardo 
Authordc.contributor.authorValladares Ide, Denisse 
Authordc.contributor.authorCasas Atala, Mariana 
Authordc.contributor.authorToledo Araya, Héctor 
Authordc.contributor.authorJaimovich Pérez, Enrique 
Authordc.contributor.authorBuvinic Radic, Sonja 
Admission datedc.date.accessioned2016-09-05T18:36:49Z
Available datedc.date.available2016-09-05T18:36:49Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationSkeletal Muscle (2016) 6:15es_ES
Identifierdc.identifier.other10.1186/s13395-016-0087-5
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/140308
Abstractdc.description.abstractBackground: Electrical activity regulates the expression of skeletal muscle genes by a process known as “ excitation-transcription” (E-T) coupling. We have demonstrated that release of adenosine 5′-triphosphate (ATP) during depolarization activates membrane P2X/P2Y receptors, being the fundamental mediators between electrical stimulation, slow intracellular calcium transients, and gene expression. We propose that this signaling pathway would require the proper coordination between the voltage sensor (dihydropyridine receptor, DHPR), pannexin 1 channels (Panx1, ATP release conduit), nucleotide receptors, and other signaling molecules. The goal of this study was to assess protein-protein interactions within the E-T machinery and to look for novel constituents in order to characterize the signaling complex. Methods: Newborn derived myotubes, adult fibers, or triad fractions from rat or mouse skeletal muscles were used. Co-immunoprecipitation, 2D blue native SDS/PAGE, confocal microscopy z-axis reconstruction, and proximity ligation assays were combined to assess the physical proximity of the putative complex interactors. An L6 cell line overexpressing Panx1 (L6-Panx1) was developed to study the influence of some of the complex interactors in modulation of gene expression. Results: Panx1, DHPR, P2Y2 receptor (P2Y2R), and dystrophin co-immunoprecipitated in the different preparations assessed. 2D blue native SDS/PAGE showed that DHPR, Panx1, P2Y2R and caveolin-3 (Cav3) belong to the same multiprotein complex. We observed co-localization and protein-protein proximity between DHPR, Panx1, P2Y2R, and Cav3 in adult fibers and in the L6-Panx1 cell line. We found a very restricted location of Panx1 and Cav3 in a putative T-tubule zone near the sarcolemma, while DHPR was highly expressed all along the transverse (T)-tubule. By Panx1 overexpression, extracellular ATP levels were increased both at rest and after electrical stimulation. Basal mRNA levels of the early gene cfos and the oxidative metabolism markers citrate synthase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were significantly increased by Panx1 overexpression. Interleukin 6 expression evoked by 20-Hz electrical stimulation (270 pulses, 0.3 ms each) was also significantly upregulated in L6-Panx1 cells. Conclusions: We propose the existence of a relevant multiprotein complex that coordinates events involved in E-T coupling. Unveiling the molecular actors involved in the regulation of gene expression will contribute to the understanding and treatment of skeletal muscle disorders due to wrong-expressed proteins, as well as to improve skeletal muscle performance.es_ES
Patrocinadordc.description.sponsorshipFondecyt 11100454 1151293 1151353 11130267 Conicyt 79090021 22120686 21151035 21150604 PIA-ACT-1111es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherBiomed Centrales_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceSkeletal Musclees_ES
Keywordsdc.subjectMultiprotein complexes_ES
Keywordsdc.subjectExcitation-transcription couplinges_ES
Keywordsdc.subjectDihydropyridine receptores_ES
Keywordsdc.subjectNucleotide receptorses_ES
Keywordsdc.subjectPannexin 1es_ES
Keywordsdc.subjectSkeletal muscle plasticityes_ES
Area Temáticadc.subject.otherMedicinaes_ES
Títulodc.titleCharacterization of a multiprotein complex involved in excitation-transcription coupling of skeletal musclees_ES
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile