About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

Artículo
Thumbnail
Open/Download
IconFour-new-planets-around-giant-stars.pdf (877.7Kb)
Publication date
2016
Metadata
Show full item record
Cómo citar
Jones, M. L.
Cómo citar
Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars
.
Copiar
Cerrar

Author
  • Jones, M. L.;
  • Jenkins, James Stewart;
  • Brahm, R.;
  • Wittenmyer, R. A.;
  • Olivares, E. F.;
  • Melo, C. H.;
  • Rojo Rubke, Patricio;
  • Jordan, A.;
  • Drass, H.;
  • Butler, R.;
  • Wang, L.;
Abstract
Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims. During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods. We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results. We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7(-5.9)(+15.5)% around stars with [Fe/H] similar to 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M-* similar to 1.0 and 2.1 M-circle dot , with a maximum of f = 13.0(-4.2)(+10.1)% at M-* = 2.1 M-circle dot. -4.2% at M-* = 2.1 M-circle dot. Conclusions. We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of similar to 1.0-2.1 M-circle dot. These observational results confirm previous findings for solar-type and post-MS hosting stars, and provide further support to the core-accretion formation model
Patrocinador
Fondecyt 3140607 1130857 1120299 3140326 3150314 FONDEF CA13I10203 Ministry of Economy, Development, and Tourism's Millennium Science Initiative IC120009 CATA-Basal PFB-06 MAS
Indexation
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/141416
DOI: 10.1051/0004-6361/201628067
Quote Item
A&A 590, A38 (2016)
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account