Azimuthal asymmetries in the debris disk around HD61005 A massive collision of planetesimals?
Artículo
Open/ Download
Publication date
2016Metadata
Show full item record
Cómo citar
Olofsson, J.
Cómo citar
Azimuthal asymmetries in the debris disk around HD61005 A massive collision of planetesimals?
Author
- Olofsson, J.;
- Samland, M.;
- Avenhaus, Henning;
- Cáceres, C.;
- Henning, Thomas;
- Moor, A.;
- Milli, Julien;
- Cánovas, Héctor;
- Quanz, Sascha;
- Schreiber, Matthias;
- Augereau, J. C.;
- Bayo, A.;
- Bazzon, A.;
- Beuzit, J.L.;
- Boccaletti, Anthony;
- Buenzli, E.;
- Casassus Montero, Simón;
- Chauvin, G.;
- Dominik, C.;
- Desidera, S.;
- Feldt, M.;
- Gratton, R.;
- Janson, M.;
- Lagrange, Anne Marie;
- Langlois, Maud;
- Lannier, J.;
- Maire, Anne-Lise;
- Mesa, D.;
- Pinte, Christophe;
- Rouan, D.;
- Salter, G.;
- Thalmann, Christian;
- Vigan, A.;
Abstract
Context. Debris disks off er valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk.
Aims. High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes.
Methods. Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr-old solar-type star HD61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. We perform a detailed modeling of these observations, including the spectral energy distribution.
Results. Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (e similar to 0.1) and that the dust density is two times larger at the pericenter compared to the apocenter.
Conclusions. With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between similar to 1000 km-sized bodies at similar to 61 au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star
Patrocinador
Millennium Nucleus (Chilean Ministry of Economy) RC130007
ALMA/CONICYT Project 31130027
FONDECYT Postdoctoral Grant 3150643
CONICYT FONDECYT 3140592
ALMA/CONICYT 31130027 31100025
Proyecto Fondecyt Iniciacion 11140572
Momentum grant of the MTA CSFK Lendulet Disk Research Group
Bolyai Research Fellowship of the Hungarian Academy of Sciences
Indexation
Artículo de publicación ISI
Quote Item
A&A 591, A108 (2016)
Collections
The following license files are associated with this item: