Problemas inversos y controlabilidad en modelos de la mecánica de fluidos
Tesis
Publication date
2016Metadata
Show full item record
Cómo citar
Zamorano Aliaga, Jaime
Cómo citar
Problemas inversos y controlabilidad en modelos de la mecánica de fluidos
Professor Advisor
Abstract
Esta tesis doctoral está dedicada al estudio de problemas inversos y de control en el área de la mecánica de fluidos. Nos centramos en las ecuaciones de Stokes y de Navier Stokes, tanto sistemas estacionarios como evolutivos, los cuales son bien conocidos para el desarrollo matemático de los flujos viscosos incompresibles. En concreto, se analizaron tres temas principales:
Realizamos la estimación del tamaño de una cavidad D inmersa en un dominio acotado Ω ⊂ Rd, d = 2, 3, lleno de un fluido viscoso el cual se rige por el sistema de Stokes, por medio de la velocidad y las fuerzas de Cauchy en la frontera ∂Ω. Más precisamente, establecemos una cota inferior y superior en términos de la diferencia entre las mediciones externas cuando el obstáculo está presente y cuando no lo está. La demostración del resultado se basa en los resultados de regularidad interior y estimaciones cuantitativas de continuación única para la solución del sistema de Stokes.
Desarrollamos el estudio del fenómeno del turnpike que surge en el problema de control de seguimiento óptimo distribuido para las ecuaciones de Navier Stokes. Obtenemos una respuesta positiva a esta propiedad en el caso de que los controles son funciones dependientes del tiempo, y también cuando son independientes del tiempo. En ambos casos se prueba una propiedad de turnpike exponencial, bajo el supuesto que el estado óptimo estacionario satisface ciertas propiedades de pequeñez.
Consideramos las ecuaciones de Stokes evolutivas con viscosidad no constante. En primer lugar adaptamos la construcción de soluciones del tipo óptica geométrica complejas apropiadas para una ecuación de Stokes estacionaria modificada, con el fin de demostrar un resultado de identificabilidad siguiendo el enfoque dado por Uhlmann [110] y de Heck et al. [62]. Luego, se estudia la identificabilidad global para la función de viscosidad por medio de mediciones de contorno reduciendo el problema al caso estacionario, cuando consideramos el horizonte de tiempo suficientemente grande.
General note
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática
Patrocinador
Este trabajo ha sido financiado por CONICYT
Identifier
URI: https://repositorio.uchile.cl/handle/2250/142561
Collections
The following license files are associated with this item: