Show simple item record

Authordc.contributor.authorJourani, A. 
Authordc.contributor.authorVilches Gutiérrez, Emilio 
Admission datedc.date.accessioned2017-03-27T21:12:51Z
Available datedc.date.available2017-03-27T21:12:51Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationJournal of Convex Analysis Volumen: 23 Número: 3 Páginas: 775-821es_ES
Identifierdc.identifier.issn0944-6532
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/143333
Abstractdc.description.abstractWe consider the general class of positively alpha-far sets, introduced in [29], which contains strictly the class of uniformly prox-regular sets and the class of uniformly subsmooth sets. We provide some conditions to assure the uniform subsmoothness, and thus the positive alpha-farness, of the inverse images under a differentiable mapping. Then, we take advantage of the properties of this class to study the generalized perturbed sweeping process {-(x)over dot(t) is an element of F(t, x(t))+ g(x(t))N (C(t), h(x(t))) a.e. t is an element of[T-0, T], x(T-0) = x(0) is an element of h(-1) (C(T-0)), where g : X -> L(Y; X), h: X -> Y are two functions, X, Y are two separable Hilbert spaces and the sets C(t) belong to the class of positively alpha-far sets. This differential inclusion includes the classical perturbed sweeping process as well as complementarity dynamical systems. Our study is achieved by approximating the given differential inclusion with maximally perturbed differential inclusions which, under certain compactness conditions, converges to an absolutely continuous solution. Moreover, this approach allows us to get existence for evolution inclusions of the form {-(x)over dot(t) is an element of partial derivative f(t, x(t)) + F(t, x(t)) a.e. t is an element of[T-0, T], x(T-0) = x(0), where [T-0, T] is a fixed interval with 0 <= T-0 < T, f : [T-0, T] x X -> RU {+infinity} is a lower semi-continuous function, not necessarily convex. Here partial derivative f(t, .) denotes the Clarke subdifferential of the function f(t, .) and F : [T-0, T] x X paired right arrows X is a perturbation termes_ES
Patrocinadordc.description.sponsorshipCONICYT-PCHA/Doctorado Nacional 2013-21130676es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherHeldermannes_ES
Sourcedc.sourceJournal of Convex Analysises_ES
Keywordsdc.subjectDifferential variational-inequalitieses_ES
Keywordsdc.subjectProx-regular setses_ES
Keywordsdc.subjectHilbert-spacees_ES
Keywordsdc.subjectEvolution-equationses_ES
Keywordsdc.subjectDynamical-systemses_ES
Keywordsdc.subjectInclusionses_ES
Títulodc.titlePositively alpha-Far Sets and Existence Results for Generalized Perturbed Sweeping Processeses_ES
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso a solo metadatoses_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record