Positively alpha-Far Sets and Existence Results for Generalized Perturbed Sweeping Processes
Artículo
Open/ Download
Access note
Acceso a solo metadatos
Publication date
2016Metadata
Show full item record
Cómo citar
Jourani, A.
Cómo citar
Positively alpha-Far Sets and Existence Results for Generalized Perturbed Sweeping Processes
Author
Abstract
We consider the general class of positively alpha-far sets, introduced in [29], which contains strictly the class of uniformly prox-regular sets and the class of uniformly subsmooth sets. We provide some conditions to assure the uniform subsmoothness, and thus the positive alpha-farness, of the inverse images under a differentiable mapping. Then, we take advantage of the properties of this class to study the generalized perturbed sweeping process
{-(x)over dot(t) is an element of F(t, x(t))+ g(x(t))N (C(t), h(x(t))) a.e. t is an element of[T-0, T], x(T-0) = x(0) is an element of h(-1) (C(T-0)),
where g : X -> L(Y; X), h: X -> Y are two functions, X, Y are two separable Hilbert spaces and the sets C(t) belong to the class of positively alpha-far sets. This differential inclusion includes the classical perturbed sweeping process as well as complementarity dynamical systems. Our study is achieved by approximating the given differential inclusion with maximally perturbed differential inclusions which, under certain compactness conditions, converges to an absolutely continuous solution. Moreover, this approach allows us to get existence for evolution inclusions of the form
{-(x)over dot(t) is an element of partial derivative f(t, x(t)) + F(t, x(t)) a.e. t is an element of[T-0, T], x(T-0) = x(0),
where [T-0, T] is a fixed interval with 0 <= T-0 < T, f : [T-0, T] x X -> RU {+infinity} is a lower semi-continuous function, not necessarily convex. Here partial derivative f(t, .) denotes the Clarke subdifferential of the function f(t, .) and F : [T-0, T] x X paired right arrows X is a perturbation term
Patrocinador
CONICYT-PCHA/Doctorado Nacional 2013-21130676
Indexation
Artículo de publicación ISI
Quote Item
Journal of Convex Analysis Volumen: 23 Número: 3 Páginas: 775-821
Collections