Show simple item record

Authordc.contributor.authorSafi, Asad 
Authordc.contributor.authorZiauddin, Sheikh 
Authordc.contributor.authorHorsch, Alexander 
Authordc.contributor.authorZiai, Mahzad 
Authordc.contributor.authorCastañeda, Víctor 
Authordc.contributor.authorLasser, Tobias 
Authordc.contributor.authorNavab, Nassir 
Admission datedc.date.accessioned2018-03-19T19:16:18Z
Available datedc.date.available2018-03-19T19:16:18Z
Publication datedc.date.issued2016-10
Cita de ítemdc.identifier.citationInternational Journal of Advanced Computer Science and Applications, Vol. 7, No. 10, 2016es_ES
Identifierdc.identifier.issn2158-107X
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/146898
Abstractdc.description.abstractSkin cancer is one of the most frequently encountered types of cancer in the Western world. According to the Skin Cancer Foundation Statistics, one in every five Americans develops skin cancer during his/her lifetime. Today, the incurability of advanced cutaneous melanoma raises the importance of its early detection. Since the differentiation of early melanoma from other pigmented skin lesions is not a trivial task, even for experienced dermatologists, computer aided diagnosis could become an important tool for reducing the mortality rate of this highly malignant cancer type. In this paper, a computer aided diagnosis system based on machine learning is proposed in order to support the clinical use of optical spectroscopy for skin lesions quantification and classification. The focuses is on a feasibility study of optical spectroscopy as a medical tool for diagnosis. To this end, data acquisition protocols for optical spectroscopy are defined and detailed analysis of feature vectors is performed. Different techniques for supervised and unsupervised learning are explored on clinical data, collected from patients with malignant and benign skin lesions.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSciencie & Information SAI Organizationes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInternational Journal of Advanced Computer Science and Applicationses_ES
Keywordsdc.subjectMelanomaes_ES
Keywordsdc.subjectClassificationes_ES
Keywordsdc.subjectSupervised learninges_ES
Keywordsdc.subjectComputer-aided diagnosises_ES
Keywordsdc.subjectMachine learninges_ES
Keywordsdc.subjectOptical spectroscopyes_ES
Títulodc.titleFeasibility study of optical spectroscopy as a medical tool for diagnosis of skin lesionses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorpgves_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile