Show simple item record

Authordc.contributor.authorHinton, David J. 
Authordc.contributor.authorSantiago Vázquez, Marely 
Authordc.contributor.authorGeske, Jennifer R. 
Authordc.contributor.authorHitschfeld Arriagada, Mario 
Authordc.contributor.authorHo, Ada M.C 
Authordc.contributor.authorKarpyak, Víctor M. 
Authordc.contributor.authorBiernacka, Joanna M. 
Authordc.contributor.authorChoi, Doo-sup 
Admission datedc.date.accessioned2018-03-29T14:29:55Z
Available datedc.date.available2018-03-29T14:29:55Z
Publication datedc.date.issued2017-05-31
Cita de ítemdc.identifier.citationScientific Reports Volumen: 7 Número de artículo: 2496 (2017)es_ES
Identifierdc.identifier.other10.1038/s41598-017-02442-4
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/147082
Abstractdc.description.abstractPrecision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.es_ES
Patrocinadordc.description.sponsorshipSamuel C. Johnson for Genomics of Addiction Program at Mayo Clinic Ulm Foundation American Society for Pharmacology and Experimental Therapeutics Mayo-Karolinska Institute (KI) Research Award National Institute on Alcohol Abuse and Alcoholism AA018779 AA017830es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherNaturees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceScientific Reportses_ES
Títulodc.titleMetabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjectses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorpgves_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile