Show simple item record

Authordc.contributor.authorDottori, Martín
Authordc.contributor.authorSedeno, Lucas
Authordc.contributor.authorMartorell Caro, Miguel
Authordc.contributor.authorAlifano, Florencia
Authordc.contributor.authorHesse, Eugenia
Authordc.contributor.authorMikulan, Ezequiel
Authordc.contributor.authorGarcía, Adolfo M.
Authordc.contributor.authorRuiz Tagle, Amparo
Authordc.contributor.authorLillo Zurita, Patricia
Authordc.contributor.authorSlachevsky Chonchol, Andrea
Authordc.contributor.authorSerrano, Cecilia
Authordc.contributor.authorFraiman, Daniel
Authordc.contributor.authorIbanez, Agustín
Admission datedc.date.accessioned2018-05-28T20:47:47Z
Available datedc.date.available2018-05-28T20:47:47Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationScientific Reports 7: 3822 (2017)es_ES
Identifierdc.identifier.other10.1038/s41598-017-04204-8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/148234
Abstractdc.description.abstractDeveloping effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer's disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.es_ES
Patrocinadordc.description.sponsorshipCONICYT/FONDECYT 1170010 1140114 11404223 1160940 / Conicyt/Associative Research Program/Basal Funds Grant for Centers of Excellence (AS ART) FB 0003 / INECO Foundation / PICT 2012-0412 2012-1309 / CONICET / CONICYT/FONDAP 15150012es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherNaturees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceScientific Reportses_ES
Títulodc.titleTowards affordable biomarkers of frontotemporal dementia: a classification study via network's information sharinges_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile