Show simple item record

Authordc.contributor.authorCataldo, Alejandro 
Authordc.contributor.authorFerrer, Juan Carlos 
Authordc.contributor.authorMiranda Pino, Jaime 
Authordc.contributor.authorRey, Pablo A. 
Authordc.contributor.authorSaure, Antoine 
Admission datedc.date.accessioned2018-05-29T16:55:56Z
Available datedc.date.available2018-05-29T16:55:56Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationAnn Oper Res (2017) 258:369–393es_ES
Identifierdc.identifier.other10.1007/s10479-016-2321-2
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/148292
Abstractdc.description.abstractThe examination timetabling problem (ETTP) consists in the assignment of specific dates to the exams of a set of courses assuming that the course enrollments are known. This problem is also known as post-enrollment ETTP. In this paper, we describe and solve a variant of the ETTP which has two particularities: (1) it does not assume the course enrollments as known and uses the curriculum of the degree program to evaluate potential conflicts in the exam schedules, and (2) it considers the exams and classrooms of multiple degree programs simultaneously. We refer to this variant of the ETTP as curriculum-based examination timetabling problem (CB-ETTP), a problem faced by many universities worldwide, being the Universidad Diego Portales (UDP) in Santiago of Chile one of them. To the best of our knowledge, this problem has not been described as such in the ETTP literature. We propose an approach to solve the CB-ETTP consisting of four sequential stages. The first stage groups courses into clusters and generates classroom configurations called room patterns. The second stage assigns time slots and room patterns to course clusters. Then, the third stage assigns time slots and room patterns to individual courses. Finally, the fourth stage generates a definitive exam schedule assigning specific rooms to each course exam. We evaluate the performance of the proposed approach by applying it to real-world instances generated based on data provided by the Faculty of Engineering at the UDP. The results show a reduction in the number of conflicts and rescheduling with respect to the current exam scheduling practice used by this university.es_ES
Patrocinadordc.description.sponsorshipMillennium Institute Complex Engineering Systems (ISCI), Chile ICM-FIC: P05-004-F CONICYT: FB0816es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAnnals of Operations Researches_ES
Keywordsdc.subjectSchedulinges_ES
Keywordsdc.subjectExamination timetablinges_ES
Keywordsdc.subjectCurriculum basedes_ES
Keywordsdc.subjectInteger programminges_ES
Keywordsdc.subjectOptimizationes_ES
Keywordsdc.subjectProblem decompositiones_ES
Títulodc.titleAn integer programming approach to curriculum-based examination timetablinges_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile