Show simple item record

Authordc.contributor.authorVerstraete, David 
Authordc.contributor.authorFerrada, Andrés 
Authordc.contributor.authorLópez Droguett, Enrique 
Authordc.contributor.authorMeruane Naranjo, Viviana 
Authordc.contributor.authorModarres, Mohammad 
Admission datedc.date.accessioned2018-06-06T21:23:55Z
Available datedc.date.available2018-06-06T21:23:55Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationShock and Vibration Vol 2017, Article ID 5067651es_ES
Identifierdc.identifier.other10.1155/2017/5067651
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/148686
Abstractdc.description.abstractTraditional feature extraction and selection is a labor-intensive process requiring expert knowledge of the relevant features pertinent to the system. This knowledge is sometimes a luxury and could introduce added uncertainty and bias to the results. To address this problem a deep learning enabled featureless methodology is proposed to automatically learn the features of the data. Time-frequency representations of the raw data are used to generate image representations of the raw signal, which are then fed into a deep convolutional neural network (CNN) architecture for classification and fault diagnosis. This methodology was applied to two public data sets of rolling element bearing vibration signals. Three time-frequency analysis methods (short-time Fourier transform, wavelet transform, and Hilbert-Huang transform) were explored for their representation effectiveness. The proposed CNN architecture achieves better results with less learnable parameters than similar architectures used for fault detection, including cases with experimental noise.es_ES
Patrocinadordc.description.sponsorshipChilean National Fund for Scientific and Technological Development (Fondecyt) 1160494es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherHindawi Ltd.es_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceShock and Vibrationes_ES
Títulodc.titleDeep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearingses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile