pi - kink propagation in the damped Frenkel Kontorova model
Artículo
Publication date
2017Metadata
Show full item record
Cómo citar
Alfaro Bittner, K.
Cómo citar
pi - kink propagation in the damped Frenkel Kontorova model
Abstract
Coupled dissipative nonlinear oscillators exhibit complex spatiotemporal dynamics. Frenkel-Kontorova is a prototype model of coupled nonlinear oscillators, which exhibits coexistence between stable and unstable state. This model accounts for several physical systems such as the movement of atoms in condensed matter and magnetic chains, dynamics of coupled pendulums, and phase dynamics between superconductors. Here, we investigate kinks propagation into an unstable state in the Frenkel-Kontorova model with dissipation. We show that unlike point-like particles pi-kinks spread in a pulsating manner. Using numerical simulations, we have characterized the shape of the pi-kink oscillation. Different parts of the front propagate with the same mean speed, oscillating with the same frequency but different amplitude. The asymptotic behavior of this propagation allows us to determine the minimum mean speed of fronts analytically as a function of the coupling constant. A generalization of the Peierls-Nabarro potential is introduced to obtain an effective continuous description of the system. Numerical simulations show quite fair agreement between the Frenkel-Kontorova model and the proposed continuous description.
Patrocinador
FONDECYT
1150507
11130450
1130622
CONICYT
21140668
Indexation
Artículo de publicación ISI
Quote Item
EPL, 119 (2017) 40003
Collections
The following license files are associated with this item: