Anomaly detection in streaming multivariate time series
Tesis
Publication date
2017Metadata
Show full item record
Cómo citar
Bustos Cárdenas, Benjamín
Cómo citar
Anomaly detection in streaming multivariate time series
Author
Professor Advisor
Abstract
Este trabajo de tesis presenta soluciones para al problema de detección de anomalı́as en
flujo de datos multivariantes. Dado una subsequencia de serie temporal (una pequeña parte
de la serie original) como entrada, uno quiere conocer si este corresponde a una observación
normal o es una anomalı́a, con respecto a la información histórica. Pueden surgir dificultades
debido principalmente a que los tipos de anomalı́a son desconocidos. Además, la detección
se convierte en una tarea costosa debido a la gran cantidad de datos y a la existencia de
variables de dominios heterogéneos. En este contexto, se propone un enfoque de detección
de anomalı́as basado en Discord Discovery, que asocia la anomalı́a con la subsecuencia
más inusual utilizando medidas de similitud. Tı́picamente, los métodos de reducción de la
dimensionalidad y de indexación son elaborados para restringir el problema resolviéndolo
eficientemente.
Adicionalmente, se propone técnicas para generar modelos representativos y consisos a
partir de los datos crudos con el fin de encontrar los patrones inusuales. Estas técnicas
también mejoran la eficiencia en la búsqueda mediante la reducción de la dimensionalidad.
Se aborda las series multivariantes usando técnicas de representación sobre subsequencias no-
normalizadas, y se propone nuevas técnicas de discord discovery basados en ı́ndices métricos.
El enfoque propuesto es comparado con técnicas del estado del arte. Los resultados ex-
perimentales demuestran que aplicando la transformación de translación y representación
de series temporales pueden contribuir a mejorar la eficacia en la detección. Además, los
métodos de indexación métrica y las heurı́sticas de discord discovery pueden resolver eficien-
temente la detección de anomalı́as en modo offline y online en flujos de series temporales
multivariantes.
General note
Doctor en Ciencias, Mención Computación
Patrocinador
Este trabajo ha sido financiado por beca CONICYT - CHILE / Doctorado para Extranjeros, y apoyada parcialmente por el Proyecto FONDEF D09I1185 y el Programa de Becas de NIC Chile
Identifier
URI: https://repositorio.uchile.cl/handle/2250/149078
Collections
The following license files are associated with this item: