Incommensurate structures investigated by X-ray studies of electropolymerised methacrylic monomer with TiO2 nanoparticles
Author
dc.contributor.author
Martínez Miranda, L. J.
Author
dc.contributor.author
Romero Hasler, P.
Author
dc.contributor.author
Meneses Franco, A.
Author
dc.contributor.author
Soto Bustamante, Eduardo
Admission date
dc.date.accessioned
2018-06-25T19:45:10Z
Available date
dc.date.available
2018-06-25T19:45:10Z
Publication date
dc.date.issued
2017
Cita de ítem
dc.identifier.citation
Liquid Crystals, 44:10, 1549-1558
es_ES
Identifier
dc.identifier.other
10.1080/02678292.2017.1302008
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/149188
Abstract
dc.description.abstract
We explore the possibility of producing polymer nanocomposites with an ordered distribution of nanoparticles by using an electropolymerizable liquid crystal (LC) monomer. The nanoparticles are added to the monomer before polymerizing it. We study the polymer derived from the LC (E)-6-(3-hydroxy-4-(((4-octyloxy)phenyl)imino)methyl)phenoxy)hexyl methacrylate (M6R8) both pure and in the presence of 3.4nm TiO2 nanoparticles, at 30wt%. This particular system is chosen since (1) the LC polymers we work with have the added advantage of having a specific orientation and structure which allows us to study its effect in the nanoparticles and (2) when considering the nanocomposite, it is polymerized with the nanoparticles included. The system is studied using grazing incidence small angle X-ray scattering and in-plane direction X-ray scattering. The polymer obtained alone appears to be tilted with respect to the surface of the substrate. The structure adopted by the nanoparticles in the nanocomposite is layered and apparently incommensurate with the polymer. It is formed through the association of the nanoparticles with the M6R8 aromatic cores during the process of electropolymerisation. This interpretation of the data is supported by the nanoparticle structures formed when the related, non-polymerizable LC, (E)-6-(3-hydroxy-4-(((4-octyloxy)phenyl)imino)methyl)phenoxy)hexyl isobutyrate (I6R8), is analysed. We find that for both, the pure polymer poly-((E)-6-(3-hydroxy-4-(((4-octyloxy)phenyl)imino)methyl)phenoxy)hexyl) methacrylate (EPM6R8) as well as the polymer with nanoparticles (EPM6R830TO), the electropolymerisation imposes a preferred growth direction of the polymer side chains, and therefore for the nanoparticle arrangement in the polymer.