Show simple item record

Authordc.contributor.authorHamedani, Kian 
Authordc.contributor.authorLiu, Lingjia 
Authordc.contributor.authorAtat, Rachad 
Authordc.contributor.authorWu, Jinsong 
Authordc.contributor.authorYi, Yang 
Admission datedc.date.accessioned2018-07-17T16:49:04Z
Available datedc.date.available2018-07-17T16:49:04Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationIEEE Transactions on Industrial Informatics Volumen: 14 Número: 2 Páginas: 734-743es_ES
Identifierdc.identifier.other10.1109/TII.2017.2769106
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/149938
Abstractdc.description.abstractA new method for attack detection of smart grids with wind power generators using reservoir computing (RC) is introduced in this paper. RC is an energy-efficient computing paradigm within the field of neuromorphic computing and the delayed feedback networks (DFNs) implementation of RC has shown superior performance in many classification tasks. The combination of temporal encoding, DFN, and a multilayer perceptron (MLP) as the output read-out layer is shown to yield performance improvement over existing attack detection methods such as MLPs, support vector machines (SVM), and conventional state vector estimation (SVE) in terms of attack detection in smart grids. The proposed algorithms are shown to be more robust than MLP and SVE in dealing with different variables such as the amplitude of the attack, attack types, and the number of compromised measurements in smart grids. The attack detection rate for the proposed RC-based system is higher than 99%, based on the accuracy metric for the average of 10 000 simulations.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEE-INST Electrical Electronics Engineers INCes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceIEEE Transactions on Industrial Informaticses_ES
Keywordsdc.subjectAttack detectiones_ES
Keywordsdc.subjectDelayed feedback networks (DFNs)es_ES
Keywordsdc.subjectNeuromorphic computinges_ES
Keywordsdc.subjectReservoir computing (RC)es_ES
Keywordsdc.subjectSmart gridses_ES
Keywordsdc.subjectState vector estimation (SVE)es_ES
Keywordsdc.subjectTemporal encoderes_ES
Títulodc.titleReservoir computing meets smart grids: attack detection using delayed feedback networkses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorrgfes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile