Show simple item record

Authordc.contributor.authorBallier, Alexis 
Authordc.contributor.authorStein, Maya 
Admission datedc.date.accessioned2018-07-20T20:09:37Z
Available datedc.date.available2018-07-20T20:09:37Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationGroups Geometry and Dynamics, 12 (1): 93-105es_ES
Identifierdc.identifier.other10.4171/GGD/439
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/150111
Abstractdc.description.abstractWe conjecture that a finitely generated group has a decidable domino problem if and only if it is virtually free. We show this is true for all virtually nilpotent finitely generated groups (or, equivalently, groups of polynomial growth), and for all finitely generated groups whose center has a non-trivial, finitely generated and torsion-free subgroup. Our proof uses a reduction of the undecidability of the domino problem on any such group G to the undecidability of the domino problem on Z(2), under the assumption that G is not virtually free. This is achieved by first finding a thick end in G, and then relating the thick end to the existence of a certain structure, resembling a half-grid, by an extension of a result of Halin.es_ES
Patrocinadordc.description.sponsorshipFONDECYT 3110088 1140766 Nucleo Milenio: Informacion y Coordinacion en Redeses_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherEuropean Mathematical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceGroups Geometry and Dynamicses_ES
Keywordsdc.subjectDomino problemes_ES
Keywordsdc.subjectGroups of polynomial growthes_ES
Keywordsdc.subjectVirtually free groupses_ES
Keywordsdc.subjectDecidabilityes_ES
Keywordsdc.subjectThick endses_ES
Títulodc.titleThe domino problem on groups of polynomial growthes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile