Show simple item record

Authordc.contributor.authorMiller, Russell A. 
Authordc.contributor.authorShi, Yuji 
Authordc.contributor.authorLu, Wenyun 
Authordc.contributor.authorPirman, David A. 
Authordc.contributor.authorJatkar, Aditi 
Authordc.contributor.authorBlatnik, Matthew 
Authordc.contributor.authorWu, Hong 
Authordc.contributor.authorCárdenas Matus, Julio 
Authordc.contributor.authorWan, Min 
Authordc.contributor.authorFoskett, J. Kevin 
Authordc.contributor.authorPark, Junyoung O. 
Authordc.contributor.authorZhang, Yiyi 
Authordc.contributor.authorHolland, William L. 
Authordc.contributor.authorRabinowitz, Joshua D. 
Authordc.contributor.authorBirnbaum, Morris J. 
Admission datedc.date.accessioned2018-07-24T22:32:13Z
Available datedc.date.available2018-07-24T22:32:13Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationNature medicine, 24 (4): 518–524es_ES
Identifierdc.identifier.other10.1038/nm.4514
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/150231
Abstractdc.description.abstractGlucagon levels increase under homeostatic, fasting conditions, promoting the release of glucose from the liver by accelerating the breakdown of glycogen (also known as glycogenolysis). Glucagon also enhances gluconeogenic flux, including from an increase in the hepatic consumption of amino acids(1). In type 2 diabetes, dysregulated glucagon signaling contributes to the elevated hepatic glucose output and fasting hyperglycemia that occur in this condition. Yet, the mechanism by which glucagon stimulates gluconeogenesis remains incompletely understood. Contrary to the prevailing belief that glucagon acts primarily on cytoplasmic and nuclear targets, we find glucagon-dependent stimulation of mitochondrial anaplerotic flux from glutamine that increases the contribution of this amino acid to the carbons of glucose generated during gluconeogenesis. This enhanced glucose production is dependent on protein kinase A (PKA) and is associated with glucagon-stimulated calcium release from the endoplasmic reticulum, activation of mitochondrial alpha-ketoglutarate dehydrogenase, and increased glutaminolysis. Mice with reduced levels of hepatic glutaminase 2 (GLS2), the enzyme that catalyzes the first step in glutamine metabolism, show lower glucagon-stimulated glutamine-to-glucose flux in vivo, and GLS2 knockout results in higher fasting plasma glucagon and glutamine levels with lower fasting blood glucose levels in insulin-resistant conditions. As found in genome-wide association studies (GWAS), human genetic variation in the region of GLS2 is associated with higher fasting plasma glucose(2,3); here we show in human cryopreserved primary hepatocytes in vitro that these natural gain-of-function missense mutations in GLS2 result in higher glutaminolysis and glucose production. These data emphasize the importance of gluconeogenesis from glutamine, particularly in pathological states of increased glucagon signaling, while suggesting a possible new therapeutic avenue to treat hyperglycemia.es_ES
Patrocinadordc.description.sponsorshipUS NIH CA211437 FONDECYT 1160332 CONICYT/FONDAP 15150012es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherNature Publishing Groupes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceNature medicinees_ES
Títulodc.titleTargeting hepatic glutaminase activity to ameliorate hyperglycemiaes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile