Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs
Author
dc.contributor.author
Bossy, Mireille
Author
dc.contributor.author
Olivero Quinteros, Héctor Cristian
Admission date
dc.date.accessioned
2018-08-02T15:15:01Z
Available date
dc.date.available
2018-08-02T15:15:01Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
Bernoulli, 24 (3): 1995-2042
es_ES
Identifier
dc.identifier.other
10.3150/16-BEJ918
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/150593
Abstract
dc.description.abstract
In this paper, we study the rate of convergence of a symmetrized version of the Milstein scheme applied to the solution of the one dimensional SDE
X-t = x(0) + integral(t)(0) b(X-S) ds + integral(t)(0) sigma vertical bar X-S vertical bar(alpha) dW(S), x(0) > 0, sigma > 0, alpha is an element of[1/2, 1).
Assuming b(0)/sigma(2) big enough, and b smooth, we prove a strong rate of convergence of order one, recovering the classical result of Milstein for SDEs with smooth diffusion coefficient. In contrast with other recent results, our proof does not relies on Lamperti transformation, and it can be applied to a wide class of drift functions. On the downside, our hypothesis on the critical parameter value b(0)/sigma(2) is more restrictive than others available in the literature. Some numerical experiments and comparison with various other schemes complement our theoretical analysis that also applies for the simple projected Milstein scheme with same convergence rate.
es_ES
Patrocinador
dc.description.sponsorship
Proyecto Mecesup
UCH0607
Direccion de Postgrado y Postitulo de la Vicerrectoria de Asuntos Academicos de la Universidad de Chile
Instituto Frances de Chile - Embajada de Francia en Chile
Center for Mathematical Modeling CMM