A new class of graphs that satisfies the Chen-Chvátal conjecture
Author
dc.contributor.author
Aboulker, P.
Author
dc.contributor.author
Matamala Vásquez, Martín
Author
dc.contributor.author
Rochet, P.
Author
dc.contributor.author
Zamora, J.
Admission date
dc.date.accessioned
2018-08-07T19:59:20Z
Available date
dc.date.available
2018-08-07T19:59:20Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
J. Graph Theory 87: 77–88, 2018
es_ES
Identifier
dc.identifier.other
10.1002/jgt.22142
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/150706
Abstract
dc.description.abstract
A well-known combinatorial theorem says that a set of n non-collinear points in the plane determines at least n distinct lines. Chen and Chvatal conjectured that this theorem extends to metric spaces, with an appropriated definition of line. In this work, we prove a slightly stronger version of Chen and Chvatal conjecture for a family of graphs containing chordal graphs and distance-hereditary graphs.
es_ES
Patrocinador
dc.description.sponsorship
Fondecyt Regular
1160975
Milenio Informacion y Coordinacion en Redes
ICM/FIC RC130003